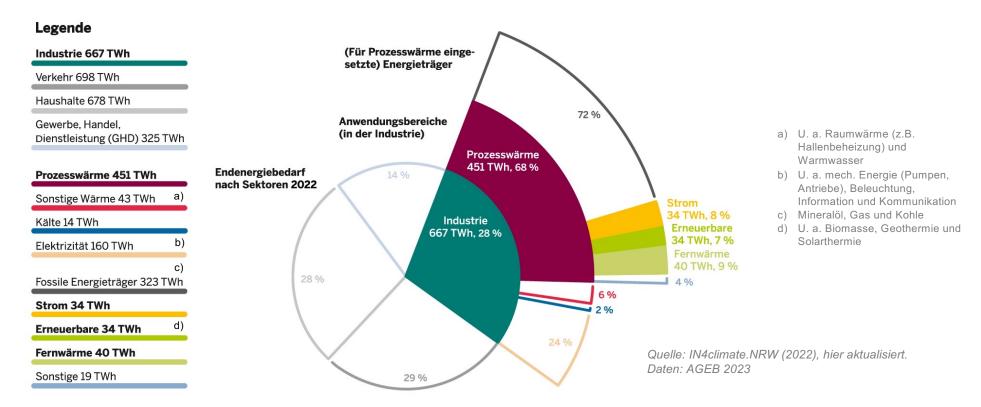


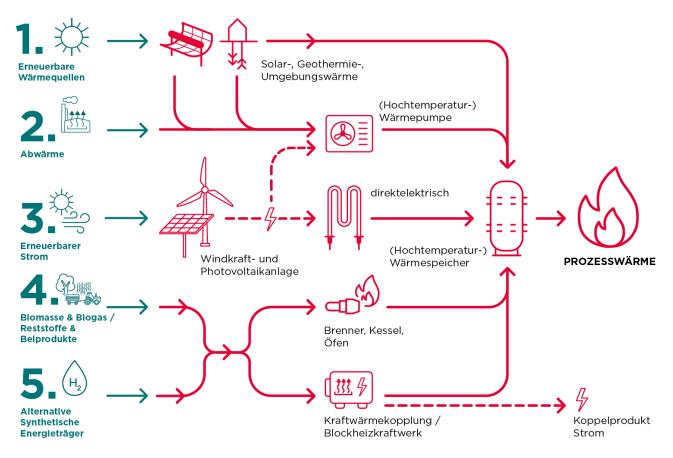
OLEC Energy Week 2024 Transformationsimpulse – Neue Wege zur Resilienz in Unternehmen

Input zu Session 1 Optionen für eine klimaneutrale Prozesswärme


Dr. Sascha Samadi, Wuppertal Institut

13. Juni 2024

Bedeutung der Prozesswärme im Endenergiebedarf Deutschlands

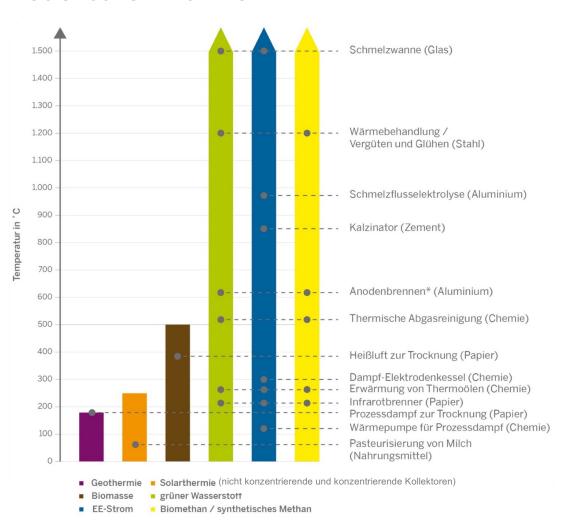


▶ 19 % des gesamten deutschen Endenergiebedarfs (2022) wurden für industrielle Prozesswärme eingesetzt; davon wird bisher nur ein Bruchteil aus regenerativen Energien oder regenerativem Strom bereitgestellt.

Optionen für klimaneutrale industrielle Prozesswärme

Charakteristika:

- Technische Eignung für Anwendungsbereich (Temperatur, Prozess, Branche)
- Zeitliches und lokales Dargebot (Solarthermie, Geothermie...)
- Infrastruktur (H₂-Leitung, Stromnetzausbau)
- Mengenverfügbarkeit (z. B. Hochlauf grüner Wasserstoff)
- Technische Reife (z. B. Elektrifizierung spezieller technischer Prozesse) und Wirtschaftlichkeit
- → maßgeschneiderte Lösungen entsprechend benötigtem Temperaturniveau erforderlich!


Forschungsbedarf

- HT-Wärmepumpen und HT-Speicher
- Hybride Konzepte und Integration verschiedener Wärmeerzeuger in industrielle Prozesse

Quelle: Schüwer / Holtz (2023)

Erzielbare Temperaturen und potenzielle Einsatzbereiche erneuerbarer Wärme

Quelle: IN4climate.NRW (2021), eigene Ergänzungen

Erarbeitet von der AG "Industrielle Prozesswärme" von IN4climate.NRW

Steigerung der Effizienz (Energie und Exergie)

z. B. Prozessoptimierungen, interne und externe Abwärmenutzung

+ 2 Erschließung erneuerbarer Wärmequellen

d. h. Solarthermie, Tiefengeothermie

+ 3 Elektrische Wärmeerzeugung (mit EE-Strom)

z. B. Elektrodenkessel, Induktion, Hochtemperatur-Wärmepumpen

+ 4. Alternative Energieträger (Grüner H₂, Biomasse, Biomethan, synthetisches Methan, u. a.)

z. B. neuartige Brennertechnologien, Brennstoffzellen

100 % CO₂-Vermeidung (der direkten Emissionen)

Stufe 1: Energieeffizienz

Steigerung der Effizienz (Energie und Exergie)

z. B. Prozessoptimierungen, interne und externe Abwärmenutzung

+ 2 Erschließung erneuerbarer Wärmequellen

d. h. Solarthermie, Tiefengeothermie

+ 3 Elektrische Wärmeerzeugung (mit EE-Strom)

z. B. Elektrodenkessel, Induktion, Hochtemperatur-Wärmepumpen

+ 4. Alternative Energieträger (Grüner H₂, Biomasse, Biomethan, synthetisches Methan, u. a.)

z. B. neuartige Brennertechnologien, Brennstoffzellen

X % CO₂-Vermeidung (der direkten Emissionen)

Stufe 2: Erneuerbare Wärmequellen

Steigerung der Effizienz (Energie und Exergie)

z. B. Prozessoptimierungen, interne und externe Abwärmenutzung

→ 2 Erschließung erneuerbarer Wärmequellen

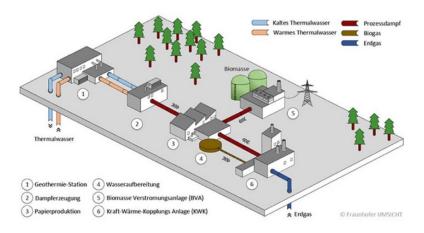
d. h. Solarthermie, Tiefengeothermie

+ 2 Elektrische Wärmeerzeugung (mit EE-Strom)

z. B. Elektrodenkessel, Induktion, Hochtemperatur-Wärmepumpen

+ 4. Alternative Energieträger (Grüner H₂, Biomasse, Biomethan, synthetisches Methan, u. a.)

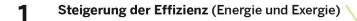
z. B. neuartige Brennertechnologien, Brennstoffzellen


y %
CO₂-Vermeidung
(der direkten Emissionen)

Stufe 2: Erneuerbare Wärmequellen

Solarthermie und Tiefengeothermie

- → Im Betrieb unabhängig von Energiepreisen und -importen
- > Solarthermie (in Kombination mit Wärmespeicher)
 - Kann auch in unseren Breitengraden die Prozesswärmebereitstellung bis max. 120 °C (nichtkonzentrierend) bzw. 300 °C (konzentrierend) unterstützen
 - Z. B. Nahrungsmittelindustrie bzw. allgemein NT-Prozesse (Bäder etc.) auch in typischen HT-Branchen
 - Kurzfristig verfügbare (hybride) Fuel-Saver-Technologie
- > Tiefengeothermie:
 - Kann bis zu ca. 180 °C kontinuierlich (!) Prozesswärme bereitstellen



Pläne für hydrothermale Geothermie (23,5 MW_{th}) zur Papiertrocknung beim Hersteller Kabel Premium Pulp & Paper

Quelle: Kabel Premium Pulp & Paper / Grafik: Fraunhofer UMSICHT

Stufe 3: Elektrische Wärmeerzeugung

z. B. Prozessoptimierungen, interne und externe Abwärmenutzung

1 2 Erschließung erneuerbarer Wärmequellen

d. h. Solarthermie, Tiefengeothermie

+ 2 Elektrische Wärmeerzeugung (mit EE-Strom)

z. B. Elektrodenkessel, Induktion, Hochtemperatur-Wärmepumpen

+ 4. Alternative Energieträger (Grüner H₂, Biomasse, Biomethan, synthetisches Methan, u. a.)

z. B. neuartige Brennertechnologien, Brennstoffzellen

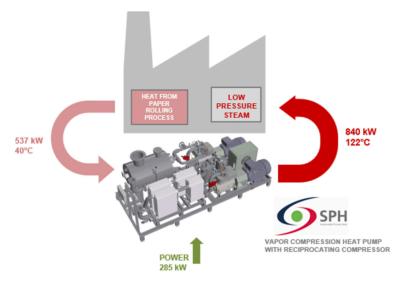
Stufe 3: Elektrische Wärmeerzeugung

Hochtemperatur-Wärmepumpen: Typische Anwendungen und Temperaturniveaus

Potenzielle Wärmequellen:

•	Kühlwasser	20 50°C
•	Abwasser	20 60°C
•	Druckluftabwärme	30 70°C
•	Abluft aus Öfen	20 100°C

Potenzielle Wärmesenken:


•	Verdampfen	40 170°C
•	Trocknen	40 250°C
•	Pasteurisieren/Sterilisieren	70 120°C
•	Destillieren	100 300°C

Potenziell für Anwendung geeignete Branchen:

- Nahrungsmittel
- · Chemie/Pharma
- Papier
- Maschinenbau & Textil
- Metallerzeugnisse, Metalle, Mineralien

Praxisbeispiel:

- Einsatz einer Hochtemperatur-Wärmepumpe bei der Papierfabrik Felix Schoeller in Weißenborn
- Die WP stellt Niederdruckdampf (ca. 122 °C) zur Papiertrocknung her und nutzt dafür Abwärme (ca. 45 °C) aus der Papiermaschine

Quelle: Push2Heat-Projekt (o. J.)

Stufe 4: Alternative Energieträger

z. B. Prozessoptimierungen, interne und externe Abwärmenutzung

+ 2 Erschließung erneuerbarer Wärmequellen

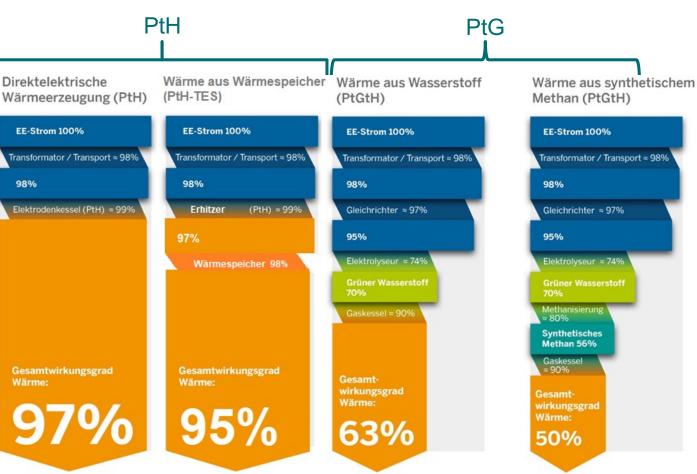
d. h. Solarthermie, Tiefengeothermie

+ 3 Elektrische Wärmeerzeugung (mit EE-Strom)

z. B. Elektrodenkessel, Induktion, Hochtemperatur-Wärmepumpen

+ 4. Alternative Energieträger (Grüner H₂, Biomasse, Biomethan, synthetisches Methan, u. a.)

z. B. neuartige Brennertechnologien, Brennstoffzellen



Stufe 4: Alternative Energieträger

PtG (H₂, Biogas, SNG) aus Effizienzgründen möglichst auf Hochtemperaturanwendungen beschränken

Projektbeispiele Wasserstoff

- Glasindustrie: HyGlass, COSiMa
- Gießereien: InnoGuss
- Stahlherstellung tkH₂Stahl

Quelle: IN4climate.NRW (2021), mit Ergänzung von Thomas Bauer, DLR

Fazit

- > Klimaneutralität erfordert auch Transformation industrieller Prozesswärme, diese ist komplex (diverse Temperaturen, Medien, Prozesse...) und muss gesamtsystemisch (sektor-, stakeholder- und branchenübergreifend) angegangen werden.
- ➤ Effizienzsteigerungen sind prioritär, Vier-Stufen-Modell gute Hilfestellung für weitere Priorisierung des Energieeinsatzes
- ➤ Erneuerbare Wärmeversorgung
 - erfordert individuelle, temperaturangepasste Lösungen und frühzeitige Evaluierung möglicher lokaler Wärmequellen
 - Tiefengeothermie und Solarthermie können für einige Branchen und NT-Anwendungen wichtige Beiträge leisten
- > Durch Sektorenkopplung (KWK, PtH, PtG), Hybridisierung und Flexibilisierung wichtige Beiträge zur Systemintegration von erneuerbarem Strom und zur Stabilisierung der Stromnetze

Mögliche Fragen für die Diskussion

- ➤ Haben sich anwesende Unternehmen soweit Prozesswärmebedarf besteht bereits mit der Frage der Umstellung auf (potenziell) klimaneutrale Prozesswärme beschäftigt?
- ➤ Falls ja, in welcher Tiefe und mit welchem Ergebnis?
- ➤ Gibt es Hürden, die Investitionen in klimaneutrale Prozesswärme z. Zt. behindern? Z. B.:
 - Fehlende Wirtschaftlichkeit (bzw. hohe Unsicherheit über Wirtschaftlichkeit)
 - Hohe Investitionskosten
 - Unzureichender Stromnetzanschluss
 - Unzureichender Wissensstand im eigenen Unternehmen und bei Partnern
 - Zweifel an technischer Ausgereiftheit der klimaneutralen Optionen
 - •
- > Welche Änderung bestehender Rahmenbedingungen ist besonders wichtig, um die Transformation der Prozesswärmebereitstellung in der Praxis umsetzen zu können?

Vielen Dank für Ihre Aufmerksamkeit!

sascha.samadi@wupperinst.org